Format

Send to

Choose Destination
Dev Biol. 2006 May 15;293(2):330-47. Epub 2006 Apr 17.

Reverse genetic analysis of neurogenesis in the zebrafish retina.

Author information

1
Department of Ophthalmology, Harvard Medical School, MEEI, r513, 243 Charles Street, Boston, MA 02114, USA.

Abstract

To gain an understanding of molecular events that underlie pattern formation in the retina, we evaluated the expression profiles of over 8000 transcripts randomly selected from an embryonic zebrafish library. Detailed analysis of cDNAs that display restricted expression patterns revealed factors that are specifically expressed in single cell classes and are potential regulators of neurogenesis. These cDNAs belong to numerous molecular categories and include cell surface receptors, cytoplasmic enzymes, and transcription factors. To test whether expression patterns that we have uncovered using this approach are indicative of function in neurogenesis, we used morpholino-mediated knockdown approach. The knockdown of soxp, a transcript expressed in the vicinity of the inner plexiform layer, revealed its role in cell type composition of amacrine and ganglion cell layers. Blocking the function of cxcr4b, a chemokine receptor specifically expressed in ganglion cells, suggests a role in ganglion cell survival. These experiments demonstrate that in situ hybridization-based reverse genetic screens can be applied to isolate genetic regulators of neurogenesis. This approach very well complements forward genetic mutagenesis studies previously used to study retinal neurogenesis in zebrafish.

PMID:
16603149
DOI:
10.1016/j.ydbio.2005.12.056
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center