Format

Send to

Choose Destination
See comment in PubMed Commons below
Physiol Rev. 2006 Apr;86(2):435-64.

Thermogenic mechanisms and their hormonal regulation.

Author information

1
Baystate Medical Education and Research Foundation, Department of Medicine, Division of Endocrinology, Baystate Medical Center, Tufts University Medical School, Springfield, Massachusetts, USA. enrique.silva@bhs.org

Abstract

Increased heat generation from biological processes is inherent to homeothermy. Homeothermic species produce more heat from sustaining a more active metabolism as well as from reducing fuel efficiency. This article reviews the mechanisms used by homeothermic species to generate more heat and their regulation largely by thyroid hormone (TH) and the sympathetic nervous system (SNS). Thermogenic mechanisms antecede homeothermy, but in homeothermic species they are activated and regulated. Some of these mechanisms increase ATP utilization (same amount of heat per ATP), whereas others increase the heat resulting from aerobic ATP synthesis (more heat per ATP). Among the former, ATP utilization in the maintenance of ionic gradient through membranes seems quantitatively more important, particularly in birds. Regulated reduction of the proton-motive force to produce heat, originally believed specific to brown adipose tissue, is indeed an ancient thermogenic mechanism. A regulated proton leak has been described in the mitochondria of several tissues, but its precise mechanism remains undefined. This leak is more active in homeothermic species and is regulated by TH, explaining a significant fraction of its thermogenic effect. Homeothermic species generate additional heat, in a facultative manner, when obligatory thermogenesis and heat-saving mechanisms become limiting. Facultative thermogenesis is activated by the SNS but is modulated by TH. The type II iodothyronine deiodinase plays a critical role in modulating the amount of the active TH, T(3), in BAT, thereby modulating the responses to SNS. Other hormones affect thermogenesis in an indirect or permissive manner, providing fuel and modulating thermogenesis depending on food availability, but they do not seem to have a primary role in temperature homeostasis. Thermogenesis has a very high energy cost. Cold adaptation and food availability may have been conflicting selection pressures accounting for the variability of thermogenesis in humans.

PMID:
16601266
DOI:
10.1152/physrev.00009.2005
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center