Format

Send to

Choose Destination
J Phys Chem B. 2006 Apr 13;110(14):7159-64.

NMR study of strontium binding by a micaceous mineral.

Author information

1
Department of Chemistry and Department of Crop and Soil Sciences, Penn State University, University Park, Pennsylvania 16802, USA.

Abstract

The nature of strontium binding by soil minerals directly affects the transport and sequestration/remediation of radioactive strontium species released from leaking high-level nuclear waste storage tanks. However, the molecular-level structure of strontium binding sites has seldom been explored in phyllosilicate minerals by direct spectroscopic means and is not well-understood. In this work, we use solid-state NMR to analyze strontium directly and indirectly in a fully strontium-exchanged synthetic mica of nominal composition Na(4)Mg(6)Al(4)Si(4)O(20)F(4). Thermogravimetric analysis, X-ray diffraction analysis, and NMR evidence supports that heat treatment at 500 degrees C for 4 h fully dehydrates the mica, creating a hydrogen-free interlayer. Analysis of the strontium NMR spectrum of the heat-treated mica shows a single strontium environment with a quadrupolar coupling constant of 9.02 MHz and a quadrupolar asymmetry parameter of 1.0. These quadrupolar parameters are consistent with a highly distorted and asymmetric coordination environment that would be produced by strontium cations without water in the coordination sphere bound deep within the ditrigonal holes. Evidence for at least one additional strontium environment, where proton-strontium couplings may occur, was found via a (1)H-(87)Sr transfer of populations by double resonance NMR experiment. We conclude that the strontium cations in the proton-free interlayer are observable by (87)Sr NMR and bound through electrostatic interactions as nine coordinate inner-sphere complexes sitting in the ditrigonal holes. Partially hydrated strontium cations invisible to direct (87)Sr NMR are also present and located on the external mica surfaces, which are known to hydrate upon exposure to atmospheric moisture. These results demonstrate that modern pulsed NMR techniques and high fields can be used effectively to provide structural details of strontium binding by phyllosilicate minerals.

PMID:
16599480
DOI:
10.1021/jp057205k

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center