Influence of glutathione fructosylation on its properties

Arch Biochem Biophys. 2006 May 15;449(1-2):34-46. doi: 10.1016/j.abb.2006.02.019. Epub 2006 Mar 13.

Abstract

Incubation of fructose and glutathione leads to the formation of N-2-deoxy-glucos-2-yl glutathione as the major glycation product, with characteristic positive ion at 470 Th in LC-MS spectra. Glutathione disulfide and fructose generate two compounds: N-2-deoxy-glucos-2-yl glutathione disulfide (m/z=775 Th) and bis di-N,N'-2-deoxy-glucos-2-yl glutathione disulfide (m/z=937 Th). N-2-deoxy-glucos-2-yl glutathione is 2.5-fold less effective than glutathione in reducing dehydroascorbic acid. Glutathione peroxidase and glutahione-S-transferase exhibit marginal activity toward N-2-deoxy-glucos-2-yl glutathione, while glyoxalase I shows 44.9% of the enzyme's specific activity. Glutathione reductase demonstrates 6.9% of the enzyme's specific activity with bis di-N,N'-2-deoxy-glucos-2-yl glutathione, while with mono-N-glucosyl glutathione disulfide retained 5 6.1% of the original activity. Glutathione reductase could not reduce N-2-deoxy-glucos-2-yl glutathione in mixed disulfide with gammaS-crystallin, but reduced glutathione in mixed disulfide with gammaS-crystallin by 90%. The presence of N-2-deoxy-glucos-2-yl glutathione in mixed disulfide with gammaS-crystallin makes this molecule more susceptible to unfolding than native gammaS-crystallin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fructose / analysis
  • Fructose / chemistry*
  • Glutathione / analysis
  • Glutathione / chemistry*
  • Structure-Activity Relationship

Substances

  • Fructose
  • Glutathione