Format

Send to

Choose Destination
See comment in PubMed Commons below
Tissue Eng. 2006 Mar;12(3):423-33.

Tissue-engineered bone repair of goat-femur defects with osteogenically induced bone marrow stromal cells.

Author information

  • 1Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Tissue Engineering Center, Shanghai Second Medical University, Shanghai, China.

Abstract

Tissue engineering can generate bone tissue and has been shown to provide a better means of repairing weight-bearing bone defect. Previous studies, however, have heretofore been limited to the use of nonosteogenically induced bone marrow stromal cells (BMSCs) or the application of slow-degradation scaffolds. In this study, weight-bearing bone was engineered using osteogenically induced BMSCs. In addition, coral was used as a scaffold material, due to its proper degradation rate for the engineering and repair of a goat femur defect. A 25 mm long defect was created at the middle of the right femur in each of 10 goats. The rates of defect repair were compared in an experimental group of ten goats receiving implants containing osteogenically induced BMSCs and in the control group of goats (n = 10) receiving just coral cylinders. In the experimental group, bony union was observed by radiographic and gross view at 4 months, and engineered bone was further remodeled into newly formed cortexed bone at 8 months. There was increased gray density of radiographic rays in the repaired area, which was significantly different (p < 0.05) from that of the control group. H&E staining demonstrated that trabecular bone was formed at 4 months. Moreover, irregular osteon was observed at 8 months. Most importantly, the tissue-engineered bone segment revealed a similarity to the left-side normal femur in terms of bend load strength and bend rigidity, showing no significant difference (p > 0.05). In contrast, the coral cylinders of the control group showed no bone formation. Furthermore, almost complete resorption of the carrier had occurred, being evident at 2 months in the control group. H&E staining demonstrated that a small amount of residual coral particle was surrounded by fibrous tissue at 4 months whereas the residues disappeared at 8 months. Based on these results, we conclude that engineered bone from osteogenically induced BMSCs and coral can ideally heal critical-sized segmental bone defects in the weight-bearing area of goats.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc.
    Loading ...
    Write to the Help Desk