Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1991 Nov 5;266(31):20976-83.

A truncated protein kinase domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) expressed in Escherichia coli.

Author information

1
Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201.

Abstract

The amino-terminal domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) contains a serine/threonine-specific protein kinase that has characteristics of a growth factor receptor (Chung, T. D., Wymer, J. P., Smith, C. C., Kulka, M., and Aurelian, L. (1989) J. Virol. 63, 3389-3398; Chung, T. D., Wymer, J. P., Kulka, M. Smith, C. C., and Aurelian, L. (1990) Virology 179, 168-178). To characterize this protein kinase (PK) domain further we constructed a bacterial expression vector (pJL11) containing DNA sequences encoding ICP10 amino acid residues 1-445. Bacteria containing pJL11 were induced to express a 29-kDa protein (designated pp29la1) that represents a truncated portion of the ICP10-PK domain (includes PK catalytic motifs I-V) as demonstrated by immunoprecipitation with antibodies that recognize different antigenic domains, competition studies with extracts of ICP10-positive eukaryotic cells, and peptide mapping.pp29la1 has autophosphorylating and transphosphorylating activity for calmodulin. The enzyme is activated by Mn2+ but not by Mg2+ ions, and autophosphorylation is inhibited by histone. It differs from the authentic ICP10-PK in that phosphorylation is specific only for threonine.

PMID:
1657940
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center