Format

Send to

Choose Destination
Appl Microbiol Biotechnol. 2006 Oct;72(6):1136-43. Epub 2006 Mar 31.

Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain.

Author information

1
Division of Molecular Science, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan.

Abstract

The sulfuric acid hydrolysate of lignocellulosic biomass, such as wood chips, from the forest industry is an important material for fuel bioethanol production. In this study, we constructed a recombinant yeast strain that can ferment xylose and cellooligosaccharides by integrating genes for the intercellular expressions of xylose reductase and xylitol dehydrogenase from Pichia stipitis, and xylulokinase from Saccharomyces cerevisiae and a gene for displaying beta-glucosidase from Aspergillus acleatus on the cell surface. In the fermentation of the sulfuric acid hydrolysate of wood chips, xylose and cellooligosaccharides were completely fermented after 36 h by the recombinant strain, and then about 30 g/l ethanol was produced from 73 g/l total sugar added at the beginning. In this case, the ethanol yield of this recombinant yeast was much higher than that of the control yeast. These results demonstrate that the fermentation of the lignocellulose hydrolysate is performed efficiently by the recombinant Saccharomyces strain with abilities for xylose assimilation and cellooligosaccharide degradation.

PMID:
16575564
DOI:
10.1007/s00253-006-0402-x
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center