Send to

Choose Destination
See comment in PubMed Commons below
Development. 2006 May;133(9):1757-66. Epub 2006 Mar 29.

Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans.

Author information

Molecular Neurobiology Program, Department of Pharmacology, Skirball Institute, NYU School of Medicine, New York, NY 10016, USA.


Secreted Wnt proteins influence neural connectivity by regulating axon guidance, dendritic morphogenesis and synapse formation. We report a new role for Wnt and Frizzled proteins in establishing the anteroposterior polarity of the mechanosensory neurons ALM and PLM in C. elegans. Disruption of Wnt signaling leads to a complete inversion of ALM and PLM polarity: the anterior process adopts the length, branching pattern and synaptic properties of the wild-type posterior process, and vice versa. Different but overlapping sets of Wnt proteins regulate neuronal polarity in different body regions. Wnts act directly on PLM via the Frizzled LIN-17. In addition, we show that they are needed for axon branching and anteriorly directed axon growth. We also find that the retromer, a conserved protein complex that mediates transcytosis and endosome-to-Golgi protein trafficking, plays a key role in Wnt signaling. Deletion mutations of retromer subunits cause ALM and PLM polarity, and other Wnt-related defects. We show that retromer protein VPS-35 is required in Wnt-expressing cells and propose that retromer activity is needed to generate a fully active Wnt signal.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center