Format

Send to

Choose Destination
Biochim Biophys Acta. 2006 Sep;1758(9):1343-50. Epub 2006 Feb 20.

Role of membrane lipids in the mechanism of bacterial species selective toxicity by two alpha/beta-antimicrobial peptides.

Author information

1
Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre, Hamilton, ON, Canada L8N 3Z5.

Abstract

We have previously shown that two synthetic antimicrobial peptides with alternating alpha- and beta-amino acid residues, designated simply as alpha/beta-peptide I and alpha/beta-peptide II, had toxicity toward bacteria and affected the morphology of bacterial membranes in a manner that correlated with their effects on liposomes with lipid composition similar to those of the bacteria. In the present study we account for the weak effects of alpha/beta-peptide I on liposomes or bacteria whose membranes are enriched in phosphatidylethanolamine (PE) and why such membranes are particularly susceptible to damage by alpha/beta-peptide II. The alpha/beta-peptide II has marked effects on unilamellar vesicles enriched in PE causing vesicle aggregation and loss of their internal aqueous contents. The molecular basis of these effects is the ability of alpha/beta-peptide II to induce phase segregation of anionic and zwitterionic lipids as shown by fluorescence and differential scanning calorimetry. This phase separation could result in the formation of defects through which polar materials could pass across the membrane as well as form a PE-rich membrane domain that would not be a stable bilayer. alpha/beta-Peptide II is more effective in this regard because, unlike alpha/beta-peptide I, it has a string of two or three adjacent cationic residues that can interact with anionic lipids. Although alpha/beta-peptide I can destroy membrane barriers by converting lamellar to non-lamellar structures, it does so only weakly with unilamellar vesicles or with bacteria because it is not as efficient in the aggregation of these membranes leading to the bilayer-bilayer contacts required for this phase conversion. This study provides further understanding of why alpha/beta-peptide II is more toxic to micro-organisms with a high PE content in their membrane as well as for the lack of toxicity of alpha/beta-peptide I with these cells, emphasizing the potential importance of the lipid composition of the cell surface in determining selective toxicity of anti-microbial agents.

PMID:
16564494
DOI:
10.1016/j.bbamem.2006.01.018
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center