Format

Send to

Choose Destination
See comment in PubMed Commons below
Atherosclerosis. 2007 Jan;190(1):114-23. Epub 2006 Mar 22.

Altered hepatic lipid status and apolipoprotein A-I metabolism in mice lacking phospholipid transfer protein.

Author information

1
Department of Molecular Medicine, National Public Health Institute, Biomedicum, P.O. Box 104, FI-00251 Helsinki, Finland.

Abstract

The effect of PLTP deficiency on hepatic lipid status and apolipoprotein A-I (apoA-I) biosynthesis in PLTP knockout (PLTP-KO) mice was investigated. PLTP-KO mice exhibited a marked reduction in HDL levels, but also increased triglycerides (TG), phospholipids (PL), and cholesterol in very-low-density lipoproteins (VLDL). Both male and female PLTP-KO mice displayed increased hepatic PL and decreased TG, and in the females, increased hepatic cholesterol was also detected. Primary hepatocytes from PLTP-KO mice displayed a different PL molecular species composition to the wild type (WT) controls, with prominent changes being a reduction of long chain fatty acid-containing and an increase of medium chain mono- or di-unsaturated fatty acid containing PL species. Cultured PLTP-KO hepatocytes synthesized and secreted apoA-I in similar quantities as the WT cells. However, the apoA-I secreted by PLTP-KO hepatocytes contained less choline PL, differing also in phosphatidylcholine/sphingomyelin ratio and fatty acyl species composition when compared to apoA-I from WT hepatocytes. Furthermore, the PLTP-KO-derived PL-deficient apoA-I was less stable in the hepatocyte culture medium than that produced by WT cells. These results demonstrate a complex regulatory role of PLTP in serum and liver lipid homeostasis, as well as in the formation of nascent apoA-I-PL complexes from the liver.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center