Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5072-7. Epub 2006 Mar 21.

Conditional and specific NF-kappaB blockade protects pancreatic beta cells from diabetogenic agents.

Author information

Department of Endocrinology, Hadassah University Hospital, Jerusalem 91120, Israel.


Type 1 diabetes is characterized by the infiltration of inflammatory cells into pancreatic islets of Langerhans, followed by the selective and progressive destruction of insulin-secreting beta cells. Islet-infiltrating leukocytes secrete cytokines such as IL-1beta and IFN-gamma, which contribute to beta cell death. In vitro evidence suggests that cytokine-induced activation of the transcription factor NF-kappaB is an important component of the signal triggering beta cell apoptosis. To study the in vivo role of NF-kappaB in beta cell death, we generated a transgenic mouse line expressing a degradation-resistant NF-kappaB protein inhibitor (DeltaNIkappaBalpha), acting specifically in beta cells, in an inducible and reversible manner, by using the tet-on regulation system. In vitro, islets expressing the DeltaNIkappaBalpha protein were resistant to the deleterious effects of IL-1beta and IFN-gamma, as assessed by reduced NO production and beta-cell apoptosis. This effect was even more striking in vivo, where nearly complete protection against multiple low-dose streptozocin-induced diabetes was observed, with reduced intraislet lymphocytic infiltration. Our results show in vivo that beta cell-specific activation of NF-kappaB is a key event in the progressive loss of beta cells in diabetes. Inhibition of this process could be a potential effective strategy for beta-cell protection.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center