Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2006 Mar 28;45(12):3898-911.

Temperature dependence of benzyl alcohol- and 8-anilinonaphthalene-1-sulfonate-induced aggregation of recombinant human interleukin-1 receptor antagonist.

Author information

Center for Pharmaceutical Biotechnology, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.


The critical role played by temperature in ligand-induced protein aggregation was investigated. Recombinant human interleukin-1 receptor antagonist (rhIL-1ra) and the ligands benzyl alcohol and 8-anilinonaphthalene-1-sulfonate (ANS) were used. We investigated aggregation kinetics and the conformation and cysteine reactivity of rhIL-1ra in buffer alone or in the presence of 0.9% (w/v) benzyl alcohol or 4.2 or 21 mM ANS at 25 and 37 degrees C. In buffer, protein aggregation was not detected at 25 degrees C but occurred at 37 degrees C. At 25 degrees C, neither benzyl alcohol nor 4.2 mM ANS enhanced aggregation. However, at 37 degrees C, both compounds greatly accelerated protein aggregation. With 21 mM ANS, rhIL-1ra aggregation was accelerated at both temperatures, but the effect was more pronounced at 37 degrees C than at 25 degrees C. Increasing the temperature from 25 to 37 degrees C caused a minor perturbation in the tertiary structure of rhIL-1ra in buffer but no detectable alteration in secondary structure. Benzyl alcohol enhanced the tertiary structural perturbation at 37 degrees C, but the secondary structure was not affected by the ligand. The reactivity of buried free cysteines of rhIL-1ra was enhanced by benzyl alcohol at 37 degrees C but not at 25 degrees C, consistent with the structural results. Isothermal titration calorimetry documented that the interaction of benzyl alcohol with rhIL-1ra was hydrophobic and that the degree of hydrophobic interactions increased with temperature. At 25 degrees C, the interaction of ANS with rhIL-1ra was electrostatic, but at 37 degrees C, both electrostatic and hydrophobic interactions were important. Taken together, our results support the conclusion that benzyl alcohol and ANS interact hydrophobically with partially unfolded aggregation-prone protein molecules, resulting in temperature-dependent increases in their levels and acceleration of protein aggregation.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center