Format

Send to

Choose Destination
Mod Pathol. 2006 Jun;19(6):804-14.

Immunohistochemical detection of WT1 protein in a variety of cancer cells.

Author information

1
Department of Clinical Laboratory, National Hospital Organization Osaka Minami Medical Center, Kawachinagano, Osaka, Japan. nakatsuk@ommc-hp.jp

Abstract

WT1 was first identified as a tumor suppressor involved in the development of Wilms' tumor. Recently, oncogenic properties of WT1 have been demonstrated in various hematological malignancies and solid tumors. Because WT1 has been identified as a molecular target for cancer immunotherapy, immunohistochemical detection of WT1 in tumor cells has become an essential part of routine practice. In the present study, the expression of WT1 was examined in 494 cases of human cancers, including tumors of the gastrointestinal and pancreatobiliary system, urinary tract, male and female genital organs, breast, lung, brain, skin, soft tissues and bone by immunohistochemistry using polyclonal (C-19) and monoclonal (6F-H2) antibodies against WT1 protein. Staining for C-19 and 6F-H2 was found in 35-100 and 5-88% of the cases of each kind of tumor, respectively. WT1-positive tumors included tumor of the stomach, prostate, and biliary and urinary systems, and malignant melanomas. A majority of the positive cases showed diffuse or granular staining in the cytoplasm, whereas ovarian tumors and desmoplastic small round cell tumors frequently showed nuclear staining. Glioblastomas, some of soft tissue sarcomas, osteosarcomas, and malignant melanomas of the skin showed extremely strong cytoplasmic staining as compared with other tumors. Western blot analysis showed that WT1 protein was predominantly expressed in the cytoplasm of the tumor cells in two cases of lung adenocarcinoma, supporting the intracytoplasmic staining for WT1 using immunohistochemistry. Immunohistochemical detection with routinely processed histologic sections could provide meaningful information on the expression of WT1 in cancer cells.

PMID:
16547468
DOI:
10.1038/modpathol.3800588
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center