Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2006 Jul 1;31(3):1116-28. Epub 2006 Mar 20.

User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability.

Author information

1
Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, PA 19104-6274, USA. pauly2@grasp.upenn.edu

Abstract

Active contour segmentation and its robust implementation using level set methods are well-established theoretical approaches that have been studied thoroughly in the image analysis literature. Despite the existence of these powerful segmentation methods, the needs of clinical research continue to be fulfilled, to a large extent, using slice-by-slice manual tracing. To bridge the gap between methodological advances and clinical routine, we developed an open source application called ITK-SNAP, which is intended to make level set segmentation easily accessible to a wide range of users, including those with little or no mathematical expertise. This paper describes the methods and software engineering philosophy behind this new tool and provides the results of validation experiments performed in the context of an ongoing child autism neuroimaging study. The validation establishes SNAP intrarater and interrater reliability and overlap error statistics for the caudate nucleus and finds that SNAP is a highly reliable and efficient alternative to manual tracing. Analogous results for lateral ventricle segmentation are provided.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center