Send to

Choose Destination
J Hum Evol. 2006 Jul;51(1):1-35. Epub 2006 Mar 20.

Snakes as agents of evolutionary change in primate brains.

Author information

Department of Anthropology, University of California, Davis, 95616, USA.


Current hypotheses that use visually guided reaching and grasping to explain orbital convergence, visual specialization, and brain expansion in primates are open to question now that neurological evidence reveals no correlation between orbital convergence and the visual pathway in the brain that is associated with reaching and grasping. An alternative hypothesis proposed here posits that snakes were ultimately responsible for these defining primate characteristics. Snakes have a long, shared evolutionary existence with crown-group placental mammals and were likely to have been their first predators. Mammals are conservative in the structures of the brain that are involved in vigilance, fear, and learning and memory associated with fearful stimuli, e.g., predators. Some of these areas have expanded in primates and are more strongly connected to visual systems. However, primates vary in the extent of brain expansion. This variation is coincident with variation in evolutionary co-existence with the more recently evolved venomous snakes. Malagasy prosimians have never co-existed with venomous snakes, New World monkeys (platyrrhines) have had interrupted co-existence with venomous snakes, and Old World monkeys and apes (catarrhines) have had continuous co-existence with venomous snakes. The koniocellular visual pathway, arising from the retina and connecting to the lateral geniculate nucleus, the superior colliculus, and the pulvinar, has expanded along with the parvocellular pathway, a visual pathway that is involved with color and object recognition. I suggest that expansion of these pathways co-occurred, with the koniocellular pathway being crucially involved (among other tasks) in pre-attentional visual detection of fearful stimuli, including snakes, and the parvocellular pathway being involved (among other tasks) in protecting the brain from increasingly greater metabolic demands to evolve the neural capacity to detect such stimuli quickly. A diet that included fruits or nectar (though not to the exclusion of arthropods), which provided sugars as a neuroprotectant, may have been a required preadaptation for the expansion of such metabolically active brains. Taxonomic differences in evolutionary exposure to venomous snakes are associated with similar taxonomic differences in rates of evolution in cytochrome oxidase genes and in the metabolic activity of cytochrome oxidase proteins in at least some visual areas in the brains of primates. Raptors that specialize in eating snakes have larger eyes and greater binocularity than more generalized raptors, and provide non-mammalian models for snakes as a selective pressure on primate visual systems. These models, along with evidence from paleobiogeography, neuroscience, ecology, behavior, and immunology, suggest that the evolutionary arms race begun by constrictors early in mammalian evolution continued with venomous snakes. Whereas other mammals responded by evolving physiological resistance to snake venoms, anthropoids responded by enhancing their ability to detect snakes visually before the strike.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center