Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2006 Mar 15;26(11):2956-63.

Developmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors.

Author information

  • 1Neuroscience Program, University of Southern California, Los Angeles, California 90089-2520, USA.

Abstract

Excitotoxicity is generally studied in dissociated neurons, cultured hippocampal slices, or intact animals. However, the requirements of dissociated neurons or cultured slices to use prenatal or juvenile rats seriously limit the advantages of these systems, whereas the complexity of intact animals prevents detailed molecular investigations. In the present experiments, we studied developmental changes in NMDA neurotoxicity in acute hippocampal slices with lactate dehydrogenase (LDH) release in medium, propidium iodide (PI) uptake, and Nissl staining as markers of cell damage. Calpain-mediated spectrin degradation was used to test calpain involvement in NMDA neurotoxicity. NMDA treatment produced increased LDH release, PI uptake, and spectrin degradation in slices from juvenile rats but not adult rats. NMDA-induced changes in slices from young rats were blocked completely by the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate (MK-801) and by the antagonists of NR2B receptor ifenprodil and R-(R, S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperidine propranol and were partly blocked by calpain inhibitor III but were not affected by the NR2A-specific antagonist [(R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid. NMDA-induced changes in Nissl staining were also different in slices from young and adult rats and blocked by NR2B but not NR2A antagonists. In contrast to NMDA treatment, oxygen/glucose deprivation (OGD) induced neurotoxicity in slices from both young and adult rats, although OGD-induced toxicity was attenuated by MK-801 only in slices from young rats. Our results are consistent with the idea that NMDA-mediated toxicity is caused by activation of NR2B- but not NR2A-containing NMDA receptors leading to calpain activation and that developmental changes in NMDA toxicity reflect developmental changes in NMDA receptor subunit composition.

PMID:
16540573
DOI:
10.1523/JNEUROSCI.4299-05.2006
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center