Format

Send to

Choose Destination
See comment in PubMed Commons below
Med Phys. 2006 Feb;33(2):446-54.

Registration of MR prostate images with biomechanical modeling and nonlinear parameter estimation.

Author information

1
Department of Industrial Engineering and Operations Research, University of California, Berkeley, 4141 Etcheverry Hall, Berkeley, California 94720-1777, USA. ron@ieor.berkeley.edu

Abstract

Magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI) have been shown to be very useful for identifying prostate cancers. For high sensitivity, the MRI/MRSI examination is often acquired with an endorectal probe that may cause a substantial deformation of the prostate and surrounding soft tissues. Such a probe is removed prior to radiation therapy treatment. To register diagnostic probe-in magnetic resonance (MR) images to therapeutic probe-out MR images for treatment planning, a new deformable image registration method is developed based on biomechanical modeling of soft tissues and estimation of uncertain tissue parameters using nonlinear optimization. Given two-dimensional (2-D) segmented probe-in and probe-out images, a finite element method (FEM) is used to estimate the deformation of the prostate and surrounding tissues due to displacements and forces resulting from the endorectal probe. Since FEM requires tissue stiffness properties and external force values as input, the method estimates uncertain parameters using nonlinear local optimization. The registration method is evaluated using images from five balloon and five rigid endorectal probe patient cases. It requires on average 37 s of computation time on a 1.6 GHz Pentium-M PC. Comparing the prostate outline in deformed probe-out images to corresponding probe-in images, the method obtains a mean Dice Similarity Coefficient (DSC) of 97.5% for the balloon probe cases and 98.1% for the rigid probe cases. The method improves significantly over previous methods (P < 0.05) with greater improvement for balloon probe cases with larger tissue deformations.

PMID:
16532952
DOI:
10.1118/1.2163391
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for eScholarship, California Digital Library, University of California
    Loading ...
    Support Center