Send to

Choose Destination
Cell Biol Toxicol. 2006 Mar;22(2):137-47. Epub 2006 Mar 10.

Polyamine depletion partially reduces the radiation-induced cell death via cell cycle delay mediated by thioredoxin.

Author information

Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong, Daejon, Korea.


In previous studies, polyamine depletion by DFMO (alpha-difluoromethylornithine)-treatment reduced H(2)O(2)-induced apoptotic cell death by reduction of ferric ion uptake. In the present study, we analyzed the reduction of radiation-induced cell death by polyamine depletion. Exposure of HT29 cells to radiation induced severe cell death, but when cells were pretreated with DFMO, a specific inhibitor of polyamine biosynthesis, radiation-induced cell death was reduced to 50-60% of control. Cell cycle analysis showed that, in these cells, the time to reach the G(2)/M phase arrest was delayed for 20-24 h compared to the control cells, at which stage the fate of cells exposed to ionizing radiation is determined. DFMO-treated cells also showed a low level of thioredoxin, which is a high-level determinant of the cellular fate. To investigate the relationship between the G(2)/M phase arrest and the reduction of thioredoxin caused by polyamine depletion, we also analyzed thioredoxin-antisensed (asTRX) HT29 cells as for DFMO-treated cells. In asTRX-transfected cells, the gamma-irradiation-induced G(2)/M phase arrest was also significantly delayed and radiation-induced cell death was profoundly reduced, as in the DFMO-treated cells. Both sets of cells showed a decrease of cyclin D1 and an increment of HSP25, which are involved in radiation-induced cell cycle progress. Overall, these results suggest that polyamines are essential for normal cell death of HT29 cells triggered by gamma-radiation and that this is partially mediated by the regulation of thioredoxin expression.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center