Format

Send to

Choose Destination
See comment in PubMed Commons below
Vet Parasitol. 2006 May 31;138(1-2):61-74. Epub 2006 Mar 13.

Expressed sequence tag (EST) analysis of the erythrocytic stages of Babesia bovis.

Author information

1
Division of Infection Biology, Department of Infectious Diseases and Immunology, Utrecht University, P.O. Box 80165, 3508 TD Utrecht, The Netherlands. E.devries@vet.uu.nl

Abstract

Expressed sequence tags (ESTs) provide an efficient way to identify large numbers of genes expressed in a specific stage of the life cycle of an organism. Here we analysed approximately 13,000 ESTs derived from the erythrocytic stage of the apicomplexan parasite Babesia bovis. The ESTs were clustered in order to obtain information on the expression level of a gene and to increase sequence length and reliability. A total of 3522 clusters were obtained and annotated using BLAST algorithms. The clusters were estimated to represent approximately 2600 genes of which in total approximately 2.1 Mbp sequence information was obtained. Expression levels of the genes, as determined by the numbers of ESTs contained within a cluster, were compared to those of their closest homologs in the erythrocytic stage of Plasmodium falciparum and Toxoplasma gondii tachyzoites. Pathways that are represented relatively abundant in B. bovis are, amongst others, the purine salvage pathway (displaying characteristics not identified before in apicomplexans), isoprenoid biosynthesis in the apicoplast and many genes encoding mitochondrial proteins. Especially remarkable in the latter group are the F-type ATPases - which are hardly expressed in P. falciparum and T. gondii - and two highly expressed glycerol-3-phosphate dehydrogenases creating a shuttle possibly controlling the cytoplasmic NADH/NAD+ -ratio. A comparison of known antigenic proteins from Australian and American strains of B. bovis with the Israel strain used here identifies considerable sequence variation in the rhoptry associated protein-1 (RAP-1), merozoite surface proteins of the variable merozoite surface antigen (VMSA) family and spherical body proteins. Analysis of the EST clusters representing the variable erythocyte surface antigen family reveals many variant transcripts of which a few are dominant. Two putative pseudogenes also seem to be transcribed at high levels.

PMID:
16530971
DOI:
10.1016/j.vetpar.2006.01.040
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center