Format

Send to

Choose Destination
See comment in PubMed Commons below
Endocrinology. 2006 Jun;147(6):3076-84. Epub 2006 Mar 9.

Differential modulation of estrogen receptors (ERs) in ischemic brain injury: a role for ERalpha in estradiol-mediated protection against delayed cell death.

Author information

1
Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA.

Abstract

Estradiol enhances plasticity and survival of the injured brain. Our previous work demonstrates that physiological levels of estradiol protect against cerebral ischemia in the young and aging brain through actions involving estrogen receptors (ERs) and alterations in gene expression. The major goal of this study was to establish mechanisms of neuroprotective actions induced by low levels of estradiol. We first examined effects of estradiol on the time-dependent evolution of ischemic brain injury. Because estradiol is known to influence apoptosis, we hypothesized that it acts to decrease the delayed phase of cell death observed after middle cerebral artery occlusion (MCAO). Furthermore, because ERs are pivotal to neuroprotection, we examined the temporal expression profiles of both ER subtypes, ERalpha and ERbeta, after MCAO and delineated potential roles for each receptor in estradiol-mediated neuroprotection. We quantified cell death in brains at various times after MCAO and analyzed ER expression by RT-PCR, in situ hybridization, and immunohistochemistry. We found that during the first 24 h, the mechanisms of estradiol-induced neuroprotection after MCAO are limited to attenuation of delayed cell death and do not influence immediate cell death. Furthermore, we discovered that ERs exhibit distinctly divergent profiles of expression over the evolution of injury, with ERalpha induction occurring early and ERbeta modulation occurring later. Finally, we provide evidence for a new and functional role for ERalpha in estradiol-mediated protection of the injured brain. These findings indicate that physiological levels of estradiol protect against delayed cell death after stroke-like injury through mechanisms requiring ERalpha.

PMID:
16527848
DOI:
10.1210/en.2005-1177
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center