Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2006 Mar 15;128(10):3233-40.

Proton permeation into single vesicles occurs via a sequential two-step mechanism and is heterogeneous.

Author information

  • 1Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA.


This article describes the first single-vesicle study of proton permeability across the lipid membrane of small (approximately 100 nm) uni- and multilamellar vesicles, which were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). To follow proton permeation into the internal volume of each vesicle, we encapsulated carboxyfluorescein, a pH-sensitive dye whose fluorescence was quenched in the presence of excess protons. A microfluidic platform was used for easy exchange of high- and low-pH solutions, and fluorescence quenching of single vesicles was detected with single-molecule total internal reflection fluorescence (TIRF) microscopy. Upon solution exchange and acidification of the extravesicular solution (from pH 9 to 3.5), we observed for each vesicle a biphasic decay in fluorescence. Through single-vesicle analysis, we found that rate constants for the first decay followed a Poisson distribution, whereas rate constants for the second decay followed a normal distribution. We propose that proton permeation into each vesicle first arose from formation of transient pores and then transitioned into the second decay phase, which occurred by the solubility-diffusion mechanism. Furthermore, for the bulk population of vesicles, the decay rate constant and vesicle intensity (dependent on size) correlated to give an average permeability coefficient; however, for individual vesicles, we found little correlation, which suggested that proton permeability among single vesicles was heterogeneous in our experiments.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center