Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2006 Mar;72(3):2118-25.

Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction.

Author information

1
School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.

Abstract

Phylogenetic analysis of the ketosynthase (KS) gene sequences of marine sponge-derived Salinispora strains of actinobacteria indicated that the polyketide synthase (PKS) gene sequence most closely related to that of Salinispora was the rifamycin B synthase of Amycolatopsis mediterranei. This result was not expected from taxonomic species tree phylogenetics using 16S rRNA sequences. From the PKS sequence data generated from our sponge-derived Salinispora strains, we predicted that such strains might synthesize rifamycin-like compounds. Liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis was applied to one sponge-derived Salinispora strain to test the hypothesis of rifamycin synthesis. The analysis reported here demonstrates that this Salinispora isolate does produce compounds of the rifamycin class, including rifamycin B and rifamycin SV. A rifamycin-specific KS primer set was designed, and that primer set increased the number of rifamycin-positive strains detected by PCR screening relative to the number detectable using a conserved KS-specific set. Thus, the Salinispora group of actinobacteria represents a potential new source of rifamycins outside the genus Amycolatopsis and the first recorded source of rifamycins from marine bacteria.

PMID:
16517661
PMCID:
PMC1393243
DOI:
10.1128/AEM.72.3.2118-2125.2006
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center