Send to

Choose Destination
See comment in PubMed Commons below
J Nutr Biochem. 2006 Nov;17(11):750-9. Epub 2006 Jan 25.

Transgenic mouse line overexpressing the cancer-specific tNOX protein has an enhanced growth and acquired drug-response phenotype.

Author information

Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907-2059, USA.


tNOX, a novel cell surface protein related to unregulated growth and drug response of cancer cells, has been proposed as the cellular target for the anticancer action of various quinone site inhibitors with anticancer activity including the polyphenol (-)-epigallocatechin-3-gallate (EGCg). A transgenic mouse line overexpressing tNOX was generated to determine its overall growth phenotype and susceptibility to EGCg. Cultured noncancer cells lack tNOX and are unresponsive to EGCg. Overexpression of tNOX in cultured noncancer cells through transfection resulted in both enhanced growth and an acquired inhibitory response to EGCg. The tNOX transgenic mouse line was developed using a phCMV2 vector with the hemagglutinin (HA) tag. Transgenic mice exhibited both an enhanced growth rate and a response to EGCg not observed with wild-type mice. Female transgenic mice grew twice as fast as wild type, and growth was reflected in an overall increased carcass weight. Administration of EGCg in the drinking water [500 mg/kg body weight (BW)] reduced the growth rate of the transgenic mice to that of wild-type mice. The findings provide in situ validation of the hypothesis that tNOX represents a necessary and sufficient molecular target as the basis for the protective and potential cancer therapeutic benefits of EGCg.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center