Send to

Choose Destination
See comment in PubMed Commons below
J Nutr Biochem. 2006 Oct;17(10):645-58. Epub 2006 Feb 3.

Effects of dietary factors on oxidation of low-density lipoprotein particles.

Author information

  • 1Institute of Nutraceuticals and Functional Foods, Laval University, Québec, Québec, Canada G1K 7P4.


Oxidized low-density lipoproteins (ox-LDLs) appear to play a significant role in atherogenesis. In fact, circulating ox-LDL concentrations have been recognized as a risk factor for cardiovascular disease (CVD). A higher intake of some nutrients and specific food compounds such as monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs) and flavonoids have also been associated with a lower risk of CVD. These dietary factors could be associated to a lower risk of CVD through a reduction of the atherogenicity of LDL particles through limited oxidation. Therefore, the purpose of this article is to review human clinical studies that evaluated effects of dietary antioxidant vitamins, fatty acids (MUFA, PUFA) and specific flavonoid-rich foods on LDL particle oxidation and describe potential mechanisms by which dietary factors may prevent oxidation of LDL particles. Antioxidant vitamin supplements such as alpha-tocopherol and ascorbic acid as well as beta-carotene and fish-oil supplements have not been clearly demonstrated to prevent oxidation of LDL particles. Moreover, inconsistent documented effects of flavonoid-rich food such as olive oil, tea, red wine and soy on LDL particle oxidizability may be explained by difference in variety and quantity of flavonoid compounds used among studies. However, a healthy food pattern such as the Mediterranean diet, which includes a combination of antioxidant compounds and flavonoid-rich foods, appears effective to decrease LDL particle oxidizability, which may give some insight of the cardiovascular benefits associated with the Mediterranean diet.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center