Send to

Choose Destination
J Bacteriol. 2006 Mar;188(6):2262-74.

Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195.

Author information

Microbiology Research Group, Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizu-Cho, Soraku-Gun, Kyoto 619-0292, Japan.


Desulfitobacterium strains have the ability to dechlorinate halogenated compounds under anaerobic conditions by dehalorespiration. The complete genome of the tetrachloroethene (PCE)-dechlorinating strain Desulfitobacterium hafniense Y51 is a 5,727,534-bp circular chromosome harboring 5,060 predicted protein coding sequences. This genome contains only two reductive dehalogenase genes, a lower number than reported in most other dehalorespiring strains. More than 50 members of the dimethyl sulfoxide reductase superfamily and 30 paralogs of the flavoprotein subunit of the fumarate reductase are encoded as well. A remarkable feature of the genome is the large number of O-demethylase paralogs, which allow utilization of lignin-derived phenyl methyl ethers as electron donors. The large genome reveals a more versatile microorganism that can utilize a larger set of specialized electron donors and acceptors than previously thought. This is in sharp contrast to the PCE-dechlorinating strain Dehalococcoides ethenogenes 195, which has a relatively small genome with a narrow metabolic repertoire. A genomic comparison of these two very different strains allowed us to narrow down the potential candidates implicated in the dechlorination process. Our results provide further impetus to the use of desulfitobacteria as tools for bioremediation.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center