Format

Send to

Choose Destination
J Nucl Med. 2006 Mar;47(3):534-42.

166Ho-DOTMP radiation-absorbed dose estimation for skeletal targeted radiotherapy.

Author information

1
NeoRx Corp., Seattle, Washington 98119-4115, USA. hbreitz@neorx.com

Abstract

166Ho-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene-phosphonate (DOTMP) is a tetraphosphonate molecule radiolabeled with 166Ho that localizes to bone surfaces. This study evaluated pharmacokinetics and radiation-absorbed dose to all organs from this beta-emitting radiopharmaceutical.

METHODS:

After two 1.1-GBq administrations of 166Ho-DOTMP, data from whole-body counting using a gamma-camera or uptake probe were assessed for reproducibility of whole-body retention in 12 patients with multiple myeloma. The radiation-absorbed dose to normal organs was estimated using MIRD methodology, applying residence times and S values for 166Ho. Marrow dose was estimated from measured activity retained after 18 h. The activity to deliver a therapeutic dose of 25 Gy to the marrow was determined. Methods based on region-of-interest (ROI) and whole-body clearance were evaluated to estimate kidney activity, because the radiotracer is rapidly excreted in the urine. The dose to the surface of the bladder wall was estimated using a dynamic bladder model.

RESULTS:

In clinical practice, gamma-camera methods were more reliable than uptake probe-based methods for whole-body counting. The intrapatient variability of dose calculations was less than 10% between the 2 tracer studies. Skeletal uptake of 166Ho-DOTMP varied from 19% to 39% (mean, 28%). The activity of 166Ho prescribed for therapy ranged from 38 to 67 GBq (1,030-1,810 mCi). After high-dose therapy, the estimates of absorbed dose to the kidney varied from 1.6 to 4 Gy using the whole-body clearance-based method and from 8.3 to 17.3 Gy using the ROI-based method. Bladder dose ranged from 10 to 20 Gy, bone surface dose ranged from 39 to 57 Gy, and doses to other organs were less than 2 Gy for all patients. Repetitive administration had no impact on tracer biodistribution, pharmacokinetics, or organ dose.

CONCLUSION:

Pharmacokinetics analysis validated gamma-camera whole-body counting of 166Ho as an appropriate approach to assess clearance and to estimate radiation-absorbed dose to normal organs except the kidneys. Quantitative gamma-camera imaging is difficult and requires scatter subtraction because of the multiple energy emissions of 166Ho. Kidney dose estimates were approximately 5-fold higher when the ROI-based method was used rather than the clearance-based model, and neither appeared reliable. In future clinical trials with 166Ho-DOTMP, we recommend that dose estimation based on the methods described here be used for all organs except the kidneys. Assumptions for the kidney dose require further evaluation.

PMID:
16513624
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center