Format

Send to

Choose Destination
Cell Mol Neurobiol. 1991 Jun;11(3):357-70.

Calcium promotes the accumulation of polyphosphoinositides in intact and permeabilized bovine adrenal chromaffin cells.

Author information

1
Department of Pharmacology, University of Michigan Medical School, Ann Arbor 48109.

Abstract

1. Because cellular pools of phosphatidylinositol phosphate and phosphatidylinositol bisphosphate turn over rapidly during phospholipase C stimulation, the continuing production of inositol phosphates requires continuing synthesis from phosphatidylinositol of the polyphosphoinositides. In the present study in adrenal chromaffin cells, we examined the effects of nicotinic stimulation and depolarization in intact cells and micromolar Ca2+ in permeabilized cells on the levels of labeled polyphosphoinositides. We compared the effects to muscarinic stimulation in intact cells and GTP gamma S in permeabilized cells. 2. Nicotinic stimulation, elevated K+, and muscarinic stimulation cause similar production of inositol phosphates (D. A. Eberhard and R. W. Holz, J. Neurochem. 49:1634-1643, 1987). Nicotinic stimulation and elevated K+ but not muscarinic stimulation increased the levels of [3H]inositol-labeled phosphatidylinositol phosphate by 30-60% and [3H]phosphatidylinositol bisphosphate by 25-30%. The increase required Ca2+ in the medium, was maximal by 1-2 min, and was not preceded by an initial decrease in phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. 3. In digitonin-permeabilized cells, Ca2+ caused as much as a twofold increase in [3H]phosphatidylinositol phosphate and [3H]phosphatidylinositol bisphosphate. Similarly, Ca2+ enhanced the production of [32P]phosphatidylinositol phosphate and [32P]phosphatidylinositol bisphosphate in the presence of [gamma-32P]ATP. In contrast, GTP gamma S in permeabilized cells decreased polyphosphoinositides in the presence or absence of Ca2+. 4. The ability of Ca2+ to increase the levels of the polyphosphoinositides decayed with time after permeabilization. The effect of Ca2+ was increased when phosphoesterase and phospholipase C activities were inhibited by neomycin. 5. These observations suggest that Ca2+ specifically enhances polyphosphoinositide synthesis at the same time that it activates phospholipase C.

PMID:
1651165
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for MLibrary (Deep Blue)
Loading ...
Support Center