Send to

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2006 Feb 1;40(3):1055-61.

Kinetics of contaminant degradation by permanganate.

Author information

Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, 20000 NW Walker Road, Portland, Oregon 97006, USA.


To provide a more complete understanding of the kinetics of in situ chemical oxidation (ISCO) with permanganate (MnO4-), we measured the kinetics of oxidation of 24 contaminants-many for which data were not previously available. The new data reported here were determined using an efficient method based on continuous measurement of the MnO4- concentration by absorbance spectrometry. Under these conditions, the kinetics were found to be first-order with respect to both contaminant and MnO4- concentrations, from which second-order rate constants (k") were readily obtained. Emerging contaminants forwhich k" was determined (at 25 degrees C and pH 7) include 1,4-dioxane (4.2 x 10(-5) M(-1) s(-1)), methyl t-butyl ether (MTBE) (1.0 x 10(-4) M(-1) s(-1)), and methyl ethyl ketone (MEK) (9.1 x 10(-5) M(-1) s(-1)). Contaminants such as 2,4,6-trinitrotoluene (TNT), the pesticides aldicarb and dichlorvos, and many substituted phenols are oxidized with rate constants comparable to tetrachloroethene (PCE) and trichloroethene (TCE) (i.e., 0.03-1 M(-1) s(-1)) and therefore are good candidates for remediation with MnO4- in the field. There are several--sometimes competing--mechanisms by which MnO4- oxidizes contaminants, including addition to double bonds, abstraction of hydrogen or hydride, and electron transfer.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center