Format

Send to

Choose Destination
See comment in PubMed Commons below
Toxicol Sci. 2006 May;91(1):20-8. Epub 2006 Feb 28.

Workshop overview: reassessment of the cancer risk of dichloromethane in humans.

Author information

  • 1TBS Associates, Raleigh, North Carolina 27615, USA. tbstarr@mindspring.com

Abstract

The U.S. Environmental Protection Agency (U.S. EPA) classifies dichloromethane (DCM) as a "probable human carcinogen," based upon its risk assessment conducted in the late 1980s (http://www.epa.gov/iris/subst/0070.htm). Since that time, cancer risk-assessment practices have evolved, leading to improved scientifically based methods for estimating risk and for illuminating as well as reducing residual uncertainties. A new physiologically based pharmacokinetic (PBPK) model has been developed, using data from human volunteers exposed to low DCM levels, that provides new information on the human to human variability in DCM metabolism and elimination (L. M. Sweeney et al., 2004, Toxicol. Lett. 154, 201-216). This information, along with data from other published human studies, has been used to develop a new cancer risk estimation model utilizing probabilistic methodology similar to that employed recently by U.S. EPA for other chemicals (ENVIRON Health Sciences Institute, 2005, Development of population cancer risk estimates for environmental exposure to dichloromethane using a physiologically based pharmacokinetic model. Final Report to Eastman Kodak Company). This article summarizes the deliberations of a scientific peer-review panel convened on 3 and 4 May 2005 at the CIIT Centers for Health Research in Research Triangle Park, North Carolina, to review the "state of the science" for DCM and to critically evaluate the new information for its utility in assessing potential human cancer risks from DCM exposure. The panel (Melvin E Andersen, CIIT Centers for Health Research, Research Triangle Park, NC 27709; A. John Bailer, Miami University, Scripps Gerontology Center, Oxford, OH 45056; Kenneth S. Crump, ENVIRON Health Sciences Institute, Ruston, LA 71270; Clifford R. Elcombe, University of Dundee, Biomedical Research Centre, Dundee DD1 9SY, United Kingdom; Linda S. Erdreich, Exponent, 420 Lexington Avenue, Suite 1740, New York, NY 10170; Jeffery W. Fisher, University of Georgia, Department of Environmental Health Science, Athens, GA 30602; David Gaylor, Gaylor and Associates, LLC, Eureka Springs, AR 72631; F Peter Guengerich, Vanderbilt University, Department of Biochemistry, Nashville, TN 37232; Kenneth Mundt, ENVIRON Health Sciences Institute, Amherst, MA 01004; Lorenz R Rhomberg, Gradient Corporation, Cambridge, MA 021138; Charles Timchalk, Pacific Northwest National Laboratory, Richland, WA 99352), chaired by M.E.A., was composed of experts in xenobiotic metabolism and carcinogenic mechanisms, PBPK modeling, epidemiology, biostatistics, and quantitative risk assessment. Observers included representatives from U.S. EPA, CIIT, and Eastman Kodak Company (Kodak), as well as several consultants to Kodak. The workshop was organized and sponsored by Kodak, which employs DCM as a solvent in the production of imaging materials. Overall, the panel concluded that the new models for DCM risk assessment were scientifically and technically sound and represented an advance over those employed in past assessments.

PMID:
16507920
DOI:
10.1093/toxsci/kfj145
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center