Send to

Choose Destination
See comment in PubMed Commons below
Blood. 2006 Jun 15;107(12):4687-94. Epub 2006 Feb 28.

Quantitative proteomics reveals posttranslational control as a regulatory factor in primary hematopoietic stem cells.

Author information

Stem Cell and Leukaemia Proteomics Laboratory, Faculty of Medical and Human Sciences, University of Manchester, Manchester M20 4QL, UK.


The proteome is determined by rates of transcription, translation, and protein turnover. Definition of stem cell populations therefore requires a stem cell proteome signature. However, the limit to the number of primary cells available has restricted extensive proteomic analysis. We present a mass spectrometric method using an isobaric covalent modification of peptides for relative quantification (iTRAQ), which was employed to compare the proteomes of approximately 1 million long-term reconstituting hematopoietic stem cells (Lin(-)Sca(+)Kit(+); LSK(+)) and non-long-term reconstituting progenitor cells (Lin(-)Sca(+)Kit(-); LSK(-)), respectively. Extensive 2-dimensional liquid chromatography (LC) peptide separation prior to mass spectrometry (MS) enabled enhanced proteome coverage with relative quantification of 948 proteins. Of the 145 changes in the proteome, 54% were not seen in the transcriptome. Hypoxia-related changes in proteins controlling metabolism and oxidative protection were observed, indicating that LSK(+) cells are adapted for anaerobic environments. This approach can define proteomic changes in primary samples, thereby characterizing the molecular signature of stem cells and their progeny.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center