Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2006 May 5;281(18):12210-7. Epub 2006 Feb 27.

NFAT induces breast cancer cell invasion by promoting the induction of cyclooxygenase-2.

Author information

1
Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.

Abstract

The NFAT (nuclear factor of activated T cells) family of transcription factors plays a fundamental role in the transcriptional regulation of the immune response. However, NFATs are ubiquitously expressed, and recent evidence points to their important functions in human epithelial cells and carcinomas. Specifically, NFAT has been shown to be active in human breast and colon carcinoma cells and to promote their invasion through Matrigel. The mechanisms by which NFAT promotes invasion have not been defined. To identify NFAT target genes that induce carcinoma invasion, we have established stable breast cancer cell lines that inducibly express transcriptionally active NFAT. Gene expression profiling by cDNA microarray of cells induced to express NFAT revealed up-regulation of cyclooxygenase-2 (COX-2). Increased NFAT expression and activity induced COX-2 expression as well as prostaglandin E2 synthesis. This induction was more prominent when NFAT was activated by phorbol 12-myristate 13-acetate and calcium ionophore ionomycin and was blocked by the NFAT antagonist cyclosporin A. Breast cancer cells with elevated COX-2 expression showed increased invasion through Matrigel, and this was reduced in cells treated with COX-2 inhibitors. Conversely, loss of NFAT1 protein expression using small interfering RNA led to a reduction in COX-2 transcription and reduced invasion. Similarly, Matrigel invasion was reduced in cells in which COX-2 expression was reduced using specific siRNA. These findings demonstrate that NFAT promotes breast cancer cell invasion through the induction of COX-2 and the synthesis of prostaglandins.

PMID:
16505480
DOI:
10.1074/jbc.M600184200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center