Send to

Choose Destination
Neuron. 2006 Mar 2;49(5):683-95.

Regulation of thalamocortical patterning and synaptic maturation by NeuroD2.

Author information

Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.


During cortical development, both activity-dependent and genetically determined mechanisms are required to establish proper neuronal connectivity. While activity-dependent transcription may link the two processes, specific transcription factors that mediate such a process have not been identified. We identified the basic helix-loop-helix (bHLH) transcription factor Neurogenic Differentiation 2 (NeuroD2) in a screen for calcium-regulated transcription factors and report that it is required for the proper development of thalamocortical connections. In neuroD2 null mice, thalamocortical axon terminals fail to segregate in the somatosensory cortex, and the postsynaptic barrel organization is disrupted. Additionally, synaptic transmission is defective at thalamocortical synapses in neuroD2 null mice. Total excitatory synaptic currents are reduced in layer IV in the knockouts, and the relative contribution of AMPA and NMDA receptor-mediated currents to evoked responses is decreased. These observations indicate that NeuroD2 plays a critical role in regulating synaptic maturation and the patterning of thalamocortical connections.

[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms


Grant support

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center