Format

Send to

Choose Destination
Biochemistry. 2006 Mar 7;45(9):3020-32.

Quantification and characterization of P-glycoprotein-substrate interactions.

Author information

1
Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland.

Abstract

It is generally accepted that P-glycoprotein binds its substrates in the lipid phase of the membrane. Quantification and characterization of the lipid-transporter binding step are, however, still a matter of debate. We therefore selected 15 structurally diverse drugs and measured the binding constants from water to the activating (inhibitory) binding region of P-glycoprotein, K(tw(1)) (K(tw(2))), as well as the lipid-water partition coefficients, K(lw). The former were obtained by measuring the concentrations of half-maximum activation (inhibition), K(1) (K(2)), in living NIH-MDR-G185 mouse embryo fibroblasts using a Cytosensor microphysiometer, and the latter were derived from surface activity measurements. This allowed determination of the membrane concentration of drugs at half-maximum P-glycoprotein activation (C(b(1)) = (0.02 to 67) mmol/L lipid), which is much higher than the corresponding aqueous concentration (K(1) = (0.02 to 376) microM). Moreover we determined the free energy of drug binding from water to the activating binding region of the transporter (DeltaG degrees (tw(1)) = (-30 to -54) kJ/mol), the free energy of drug partitioning into the lipid membrane (DeltaG degrees (lw) = (-23 to -34) kJ/mol), and, as the difference of the two, the free energy of drug binding from the lipid membrane to the activating binding region of the transporter (DeltaG degrees (tl(1)) = (-7 to -27) kJ/mol). For the compounds tested DeltaG degrees (tl(1)) was less negative than DeltaG degrees (lw) but varied more strongly. The free energies of substrate binding to the transporter within the lipid phase, DeltaG degrees (tl(1)), are consistent with a modular binding concept, where the energetically most efficient binding module comprises two hydrogen bond acceptor groups.

PMID:
16503657
DOI:
10.1021/bi051380+
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center