Format

Send to

Choose Destination
See comment in PubMed Commons below
Development. 2006 Mar;133(6):1113-23.

Direct visualization of nucleogenesis by precerebellar neurons: involvement of ventricle-directed, radial fibre-associated migration.

Author information

1
Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.

Abstract

Nuclei are aggregates of neurons distributed in the central nervous system and are fundamental functional units that share anatomical and physiological features. Despite their importance, the cellular basis that leads to nucleogenesis is only poorly understood. Using exo utero electroporation with an enhanced yellow fluorescent protein (EYFP) gene, we show that the precerebellar neurons derived from the lower rhombic lip (lRL) undergo multiple migration steps to form nuclei. After the unilateral transfer of EYFP to the lRL of embryonic day 12.5 mice, EYFP-labelled neurons migrate tangentially from the lRL in two distinct streams, one towards the ventral metencephalon and the other towards the ventral myelencephalon. These neurons cross the ventral midline and then become radially directed. Labelled neurons in the tangential migratory streams form contralateral clusters in the external cuneate nucleus (ECN) and lateral reticular nucleus (LRN) in the myelencephalon, and bilateral clusters in the pontine grey nucleus (PGN) and reticulotegmental nucleus (RTN) in the metencephalon. Before forming the clusters, EYFP-labelled neurons begin to migrate radially towards the ventricle in close apposition to nestin-positive radial fibres, and then they aggregate as they detach from the fibres. Inhibition of cadherin function in ECN and LRN progenitors caused ipsilateral formation of the ECN and LRN, implying that the transition of their migration from tangential to radial involves a cell-intrinsic mechanism. These observations suggest that nucleogenesis of precerebellar neurons is a result of multi-phasic migration, and that ventricle-directed radial glia-guided migration is a key step for nucleogenesis.

PMID:
16501169
DOI:
10.1242/dev.02283
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center