Send to

Choose Destination
Mol Biol Evol. 2006 May;23(5):1056-67. Epub 2006 Feb 24.

On the formation of novel genes by duplication in the Caenorhabditis elegans genome.

Author information

Department of Biology, Indiana University, USA.


Gene duplication is thought to play the singular most important role in the formation of novel genes. The canonical model of gene duplication postulates that novel genes arise in a two-step fashion, namely, (1) the complete duplication of a gene followed by (2) the gradual accumulation of mutations in one or both copies leading to an altered function. It was previously demonstrated that more than 50% of newborn duplicates in Caenorhabditis elegans had unique exons in one or both members of a duplicate pair, indicating that many duplicates are not functionally identical to the progenitor copy at birth. Both partial and chimeric gene duplications contribute to the formation of novel genes. For chimeric duplications, the genomic sources of unique exons are diverse, including genic and intergenic regions, as well as repetitive elements. These novel genes derived from partial and chimeric duplications are equally likely to be transcriptionally active as copies derived from complete duplications of the ancestral gene. Duplication breakpoints in the ancestral copies are uniformly distributed in the genome, ruling out the role of any mechanism that restricts them to a particular type of sequence such as introns. Finally, both intron loss and gain contribute to the differential distribution of introns between two copies.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center