Format

Send to

Choose Destination
J Appl Physiol (1985). 2006 Jun;100(6):1938-45. Epub 2006 Feb 23.

Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes.

Author information

1
Swiss Federal Institute of Sports, Section for Elite Sport, 2532 Magglingen, Switzerland. jon.wehrlin@baspo.admin.ch

Abstract

The effect of live high-train low on hemoglobin mass (Hbmass) and red cell volume (RCV) in elite endurance athletes is still controversial. We expected that Hb(mass) and RCV would increase, when using a presumably adequate hypoxic dose. An altitude group (AG) of 10 Swiss national team orienteers (5 men and 5 women) lived at 2,500 m (18 h per day) and trained at 1,800 and 1,000 m above sea level for 24 days. Before and after altitude, Hbmass, RCV (carbon monoxide rebreathing method), blood, iron, and performance parameters were determined. Seven Swiss national team cross-country skiers (3 men and 4 women) served as "sea level" (500-1,600 m) control group (CG) for the changes in Hbmass and RCV. The AG increased Hbmass (805+/-209 vs. 848+/-225 g; P<0.01) and RCV (2,353+/-611 vs. 2,470+/-653 ml; P<0.01), whereas there was no change for the CG (Hbmass: 849+/-197 vs. 858+/-205 g; RCV: 2,373+/-536 vs. 2,387+/-551 ml). Serum erythropoietin (P<0.001), reticulocytes (P<0.001), transferrin (P<0.001), soluble transferrin receptor (P<0.05), and hematocrit (P<0.01) increased, whereas ferritin (P<0.05) decreased in the AG. These changes were associated with an increased maximal oxygen uptake (3,515+/-837 vs. 3,660+/-770 ml/min; P<0.05) and improved 5,000-m running times (1,098+/-104 vs. 1,080+/-98 s; P<0.01) from pre- to postaltitude. Living at 2,500 m and training at lower altitudes for 24 days increases Hbmass and RCV. These changes may contribute to enhance performance of elite endurance athletes.

PMID:
16497842
DOI:
10.1152/japplphysiol.01284.2005
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center