Format

Send to

Choose Destination
See comment in PubMed Commons below
J Phys Chem B. 2006 Feb 23;110(7):3173-9.

Phosphine dissociation and diffusion on Si(001) observed at the atomic scale.

Author information

1
Centre for Quantum Computer Technology, School of Physics, University of New South Wales, Sydney 2052, Australia. steven.schofield@newcastle.edu.au

Abstract

A detailed atomic-resolution scanning tunneling microscopy (STM) and density functional theory study of the adsorption, dissociation, and surface diffusion of phosphine (PH(3)) on Si(001) is presented. Adsorbate coverages from approximately 0.01 monolayer to saturation are investigated, and adsorption is performed at room temperature and 120 K. It is shown that PH(3) dissociates upon adsorption to Si(001) at room temperature to produce both PH(2) + H and PH + 2H. These appear in atomic-resolution STM images as features asymmetric-about and centered-upon the dimer rows, respectively. The ratio of PH(2) to PH is a function of both dose rate and temperature, and the dissociation of PH(2) to PH occurs on a time scale of minutes at room temperature. Time-resolved in situ STM observations of these adsorbates show the surface diffusion of PH(2) adsorbates (mediated by its lone pair electrons) and the dissociation of PH(2) to PH. The surface diffusion of PH(2) results in the formation of hemihydride dimers on low-dosed Si(001) surfaces and the ordering of PH molecules along dimer rows at saturation coverages. The observations presented here have important implications for the fabrication of atomic-scale P dopant structures in Si, and the methodology is applicable to other emerging areas of nanotechnology, such as molecular electronics, where unambiguous molecular identification using STM is necessary.

PMID:
16494325
DOI:
10.1021/jp054646v
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center