Format

Send to

Choose Destination
See comment in PubMed Commons below
Exp Brain Res. 2006 Aug;173(3):521-30. Epub 2006 Feb 21.

Adaptations of walking pattern on a compliant surface to regulate dynamic stability.

Author information

  • 1Gait and Posture Laboratory, Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.

Erratum in

  • Exp Brain Res. 2006 Aug;173(3):553.

Abstract

Dynamic stability can be threatened by various travel surface changes that humans encounter on a daily basis. The central nervous system (CNS) must acquire appropriate information about upcoming surface changes and provide necessary proactive and reactive changes to maintain stability. The purpose of this study was to examine stability control by characterizing adaptations in step patterns, center of mass (COM) trajectory, and lower limb muscle activity when stepping onto and walking on a compliant surface. Eight young adults walked under two conditions: baseline ground walking and while walking on a large foam mat (compliant surface). Optotrak system was used to collect 3D-full body kinematics and electromyography was collected for the rectus femoris, biceps femoris, tibialis anterior, medial gastrocnemius, and soleus bilaterally. Vertical COM decreased on the compliant surface while medio-lateral COM was not affected. This lowering of the vertical COM peak would provide a more stable posture when walking on the surface. Toe trajectory during the swing phase was elevated to avoid tripping on the deformable compliant surface. Step width and length increased on the compliant surface which would increase base of support and provide better control of COM. Increases in gastrocnemius and soleus activity during push-off accounted for increases in step length seen on the compliant surface. Dynamic stability margin in the anterior-posterior direction demonstrated a constant overcompensation and subsequent correction in COM control. These proactive and reactive changes in motor patterns show how the CNS actively coordinates all body segments while traveling on a compliant surface in order to maximize stability.

PMID:
16491406
DOI:
10.1007/s00221-006-0399-5
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center