Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2006 Feb 15;66(4):2219-23.

Direct demonstration of instabilities in oxygen concentrations within the extravascular compartment of an experimental tumor.

Author information

Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA.


To test the hypothesis that temporal variations in microvessel red cell flux cause unstable oxygen levels in tumor interstitium, extravascular oxygenation of R3230Ac mammary tumors grown in skin-fold window chambers was measured using recessed tip polarographic microelectrodes. Red cell fluxes in microvessels surrounding pO2 measurement locations were measured using fluorescently labeled red cells. Temporal pO2 instability was observed in all experiments. Median pO2 was inversely related to radial distance from microvessels. Transient fluctuations above and below 10 mm Hg were consistently seen, except in one experiment near the oxygen diffusion distance limit (140 microm) where pO2 fluctuations were <2 mm Hg and median pO2 was <5 mm Hg. Vascular stasis was not seen in these experiments. These results show that fluctuations in red cell flux, as opposed to vascular stasis, can cause temporal variations in pO2 that extend from perivascular regions to the maximum oxygen diffusion distance.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center