Format

Send to

Choose Destination
World J Surg. 2006 Mar;30(3):333-45.

Insulin-like growth factors (IGF) I and II utilize different calcium signaling pathways in a primary human parathyroid cell culture model.

Author information

1
Department of Endocrine Surgery, Frenchay Hospital, Frenchay Park, Bristol, BS16 1LE, United Kingdom. christopher.wong@NBT.NHS.uk

Erratum in

  • World J Surg. 2006 May;30(5):917.

Abstract

BACKGROUND:

In most cell types, influx of calcium (Ca2+) induces a growth or secretory response. The opposite occurs in parathyroid (PTH), cells where there is an inverse relationship between intracellular Ca2+ concentration and PTH secretion. We have examined the effects of calcium channel and metabolism modulators on insulin-like growth factors (IGFs) in a parathyroid cell culture model.

METHODS:

Cell cultures were prepared from 9 patients undergoing operation for hyperparathyroidism. Following adhesion, the cells were transferred to serum-free medium and dosed with IGF I, II +/- ethyleneglycol-bis(beta-aminoethyl)-N,N,N',N'-tetraacetic acid (EGTA), nifedipine, nickel, 2-aminoethoxy-diphenylborate (2-APB), or dantrolene. Proliferation (96 hours) was assessed by measuring tritiated thymidine incorporation and PTH release (1 and 3 hours) assayed by IRMA.

RESULTS:

Both IGF I and II increased DNA synthesis to 162.8% +/- 10.6% (SEM) and 131.1% +/- 7.7%, respectively (P < 0.05). EGTA at 0.2 mmol (ionized Ca2+ 0.2 mmol) did not affect the response to both IGFs. EGTA at 2 mmol (ionized Ca2+ 0 mmol) reduced the DNA synthesis of IGF I and II to 29% and 26%, respectively (P < 0.05). Nifedipine and nickel (nonspecific Ca2+ channel blocker) were equally potent in negating the mitogenic effects of both IGFs. 2-APB (IP3R blocker) reduced the basal DNA synthesis to 51.3% +/- 8.4% but had no effect on either IGF. Dantrolene (ryanodine receptor blocker) negated IGF II induced mitogenisis (74.2% +/- 6.7%) and partially inhibited IGF I mitogenesis (123% +/- 6%) (P < 0.05). The rate of PTH secretion was greater after IGF II stimulation than after IGF I stimulation.

CONCLUSIONS:

IGFs I and II induce mitogenesis by different calcium signaling pathways. These data suggest that parathyroid cells may utilize different calcium signaling pathways to distinguish growth factors and serum calcium changes.

PMID:
16485066
DOI:
10.1007/s00268-005-0339-8
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center