Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell. 2006 Feb 17;21(4):521-31.

Hypoxia-induced energy stress regulates mRNA translation and cell growth.

Author information

1
Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA.

Abstract

Oxygen (O2) deprivation, or hypoxia, has profound effects on cell metabolism and growth. Cells can adapt to low O2 in part through activation of hypoxia-inducible factor (HIF). We report here that hypoxia inhibits mRNA translation by suppressing multiple key regulators, including eIF2alpha, eEF2, and the mammalian target of rapamycin (mTOR) effectors 4EBP1, p70S6K, and rpS6, independent of HIF. Hypoxia results in energy starvation and activation of the AMPK/TSC2/Rheb/mTOR pathway. Hypoxic AMP-activated protein kinase (AMPK) activation also leads to eEF2 inhibition. Moreover, hypoxic effects on cellular bioenergetics and mTOR inhibition increase over time. Mutation of the TSC2 tumor suppressor gene confers a growth advantage to cells by repressing hypoxic mTOR inhibition and hypoxia-induced G1 arrest. Together, eIF2alpha, eEF2, and mTOR inhibition represent important HIF-independent mechanisms of energy conservation that promote survival under low O2 conditions.

PMID:
16483933
PMCID:
PMC3153113
DOI:
10.1016/j.molcel.2006.01.010
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center