Format

Send to

Choose Destination
EMBO J. 2006 Mar 8;25(5):1137-47. Epub 2006 Feb 16.

A novel regulatory mechanism couples deoxyribonucleotide synthesis and DNA replication in Escherichia coli.

Author information

1
Department of Microbiology, Harvard Medical School, Boston, MA, USA. gon@ibsm.cnrs-mrs.fr

Abstract

We present evidence for a complex regulatory interplay between the initiation of DNA replication and deoxyribonucleotide synthesis. In Escherichia coli, the ATP-bound DnaA protein initiates chromosomal replication. Upon loading of the beta-clamp subunit (DnaN) of the replicase, DnaA is inactivated as its intrinsic ATPase activity is stimulated by the protein Hda. The beta-subunit acts as a matchmaker between Hda and DnaA. Chain elongation of DNA requires a sufficient supply of deoxyribonucleotides (dNTPs), which are produced by ribonucleotide reductase (RNR). We present evidence suggesting that the molecular switch from ATP-DnaA to ADP-DnaA is a critical step coordinating DNA replication with increased deoxyribonucleotide synthesis. Characterization of dnaA and dnaN mutations that result in a constitutively high expression of RNR reveal this mechanism. We propose that the nucleotide bound state of DnaA regulates the transcription of the genes encoding ribonucleotide reductase (nrdAB). Accordingly, the conversion of ATP-DnaA to ADP-DnaA after initiation and loading of the beta-subunit DnaN would allow increased nrdAB expression, and consequently, coordinated RNR synthesis and DNA replication during the cell cycle.

PMID:
16482221
PMCID:
PMC1409723
DOI:
10.1038/sj.emboj.7600990
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center