Format

Send to

Choose Destination
Nature. 2006 Feb 16;439(7078):805-10.

Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana.

Author information

1
CIQUIBIC, Departamento de Quimica Biologica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba, Argentina.

Abstract

Pollen-pistil interactions are crucial for controlling plant mating. For example, S-RNase-based self-incompatibility prevents inbreeding in diverse angiosperm species. S-RNases are thought to function as specific cytotoxins that inhibit pollen that has an S-haplotype that matches one of those in the pistil. Thus, pollen and pistil factors interact to prevent mating between closely related individuals. Other pistil factors, such as HT-B, 4936-factor and the 120 kDa glycoprotein, are also required for pollen rejection but do not contribute to S-haplotype-specificity per se. Here we show that S-RNase is taken up and sorted to a vacuolar compartment in the pollen tubes. Antibodies to the 120 kDa glycoprotein label the compartment membrane. When the pistil does not express HT-B or 4936-factor, S-RNase remains sequestered, unable to cause rejection. Similarly, in wild-type pistils, compatible pollen tubes degrade HT-B and sequester S-RNase. We suggest that S-RNase trafficking and the stability of HT-B are central to S-specific pollen rejection.

PMID:
16482149
DOI:
10.1038/nature04491
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center