Format

Send to

Choose Destination
Invest Radiol. 2006 Mar;41(3):213-21.

Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla.

Author information

1
Section on Experimental Radiology, Department of Diagnostic Radiology, University Hospital Tübingen, Tübingen, Germany. Joerg.Pintaske@med.uni-tuebingen.de

Erratum in

  • Invest Radiol. 2006 Dec;41(12):859.

Abstract

OBJECTIVES:

We sought to determine the relaxivity and accurate relaxation rates of Gd-DTPA, Gd-BT-DO3A, and Gd-BOPTA at 0.2, 1.5, and 3 T in human blood plasma.

MATERIALS AND METHODS:

Contrast media concentrations between 0.01 and 16 mM in human plasma were used for relaxation measurements. The R1 and R2 relaxation rates and r1 and r2 relaxivities were determined.

RESULTS:

Gd-BOPTA produced the highest relaxation rates and relaxivities at all field strengths. The r1 and r2 values for Gd-BOPTA were 107-131% and 91-244% higher than for Gd-DTPA, respectively, and 72-98% and 82-166% higher than for Gd-BT-DO3A. Higher field strengths resulted in lower values of R1, R2, and r1 for all contrast agents tested and of r2 for Gd-DTPA and Gd-BT-DO3A. A linear dependence of R1 and R2 on concentration was found for Gd-DTPA and Gd-BT-DO3A and a nonlinear dependence for Gd-BOPTA for concentrations larger than 1 mM. The r1 and r2 relaxivity of Gd-BOPTA increased with decreasing concentration.

CONCLUSIONS:

Gd-BOPTA demonstrates the highest longitudinal r1 at all field strengths, which is ascribable to weak protein interaction. The R2/R1 ratio increases at higher field strength only for Gd-BOPTA, hence very short echo times are required for Gd-BOPTA to benefit from the higher longitudinal relaxivity.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center