Format

Send to

Choose Destination
J Med Chem. 2006 Feb 23;49(4):1248-60.

Inspection of the binding sites of proteinase3 for the design of a highly specific substrate.

Author information

1
Computational Biology Unit, BCCS, University of Bergen, N-5008 Bergen, Norway.

Abstract

Proteinase3 (PR3) and human neutrophil elastase (HNE) are homologous proteases from the polymorphonuclear neutrophils and have been thought for a long time to have close enzymatic specificity. We have used molecular dynamics simulations to investigate and compare the interactions between different peptides and the two enzymes. The important role played especially by the C-terminal part of the peptides is confirmed. We provide a map of the subsites of PR3 and a description of the interaction scheme for six ligands. The main difference between HNE and PR3 concerns S2, S1', S2', and S3'. The recognition subsites in PR3 are interconnected; in particular, Lys99 participates to a hydrophobic (S4) and a polar (S2) pocket. On the basis of the simulations, we suggest that VADVKDR is a highly specific sequence for PR3; enzymatic assays confirm that it is cleaved by PR3 with a high specificity constant (k(cat)/K(m) = 3,400,000 M(-1) s(-1)) and not by HNE.

PMID:
16480262
DOI:
10.1021/jm051018t
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center