Send to

Choose Destination
Lipids. 2005 Dec;40(12):1237-44.

Mitochondrial cholesterol transport: a possible target in the management of hyperlipidemia.

Author information

Department of Internal Medicine, Virginia Commonwealth University, USA.


Sterol 27-hydroxylase (CYP27A1) may defend cells against accumulation of excess cholesterol, making this enzyme a possible target in the management of hyperlipidemia. The study objective was to analyze cholesterol homeostatic responses to increases in CYP27A1 activity in HepG2 cells and primary human hepatocytes. Increasing CYP27A1 activity by increasing enzyme expression led to significant increases in bile acid synthesis with compensatory increases in HMG-CoA reductase (HMGR) activity/protein, LDL receptor (LDLR) mRNA, and LDLR-mediated cholesterol uptake. Under these conditions, only a small increase in cellular 27-hydroxycholesterol (27OH-Chol) concentration was observed. No changes were detected in mature sterol regulatory element-binding proteins (SREBP) 1 or 2. Increasing CYP27A1 activity by increasing mitochondrial cholesterol transport (i.e., substrate availability) led to greater increases in bile acid synthesis with significant increases in cellular 27OH-Chol concentration. Mature SREBP 2 protein decreased significantly with compensatory decreases in HMGR protein. No change was detected in mature SREBP 1 protein. Despite increasing 27OH-Chol and lowering SREBP 2 protein concentrations, LDLR mRNA increased significantly, suggesting alternative mechanisms of LDLR transcriptional regulation. These findings suggest that regulation of liver mitochondrial cholesterol transport represents a potential therapeutic strategy in the treatment of hyperlipidemia and atherosclerosis.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center