Send to

Choose Destination
Biodegradation. 2006 Dec;17(6):571-6. Epub 2006 Feb 14.

Growth rate and nutrient limitation affect the transport of Rhodococcus sp. strain DN22 through sand.

Author information

School of Molecular and Microbial Biosciences, University of Sydney, Building G08, 2006, Maze Crescent, Australia.


Rhodococcus strain DN22 grows on the nitramine explosive RDX as a sole nitrogen source, and is potentially useful for bioremediation of explosives-contaminated soil. In order for strain DN22 to be effectively applied in situ, inoculum cells must reach zones of RDX contamination via passive transport, a process that is difficult to predict at field-scale. We examined the effect of growth conditions on the transport of DN22 cells through sand columns, using chemostat-grown cultures. Strain DN22 formed smaller coccoid cells at low dilution rate (0.02 h(-1)) and larger rods at high dilution rate (0.1 h(-1)). Under all nutrient limitation conditions studied, smaller cells grown at low dilution rate were retained more strongly by sand columns than larger cells grown at high dilution rate. At a dilution rate of 0.05, cells from nitrate-limited cultures were retained more strongly than cells from RDX-limited or succinate-limited cultures. Breakthrough concentrations (C/C (0)) from sand columns ranged from 0.04 (nitrate-limited, D=0.02 h(-1)) to 0.98 (succinate-limited, D=0.1 h(-1)). The observed strong effect of culture conditions on transport of DN22 cells emphasizes the importance of physiology studies in guiding the development of bioremediation technologies.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center