Format

Send to

Choose Destination
See comment in PubMed Commons below
J Phys Chem B. 2006 Feb 16;110(6):2804-11.

Density functional theory study of formic acid adsorption on anatase TiO2(001): geometries, energetics, and effects of coverage, hydration, and reconstruction.

Author information

1
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA. xgong@princeton.edu

Abstract

We present density functional theory calculations and first-principles molecular dynamics simulations of formic acid adsorption on anatase TiO(2)(001), the minority surface exposed by anatase TiO(2) nanoparticles. A wide range of factors that may affect formic acid adsorption, such as coverage, surface hydration, and reconstruction, are considered. It is found that (i) formic acid dissociates spontaneously on unreconstructed clean TiO(2)(001)-1 x 1, as well as on the highly reactive ridge of the reconstructed TiO(2)(001)-1 x 4 surface; (ii) on both the 1 x 1 and 1 x 4 surfaces, various configurations of dissociated formic acid exist with adsorption energies of about 1.5 eV, which very weakly depend on the coverage; (iii) bidentate adsorption configurations, in which the formate moiety binds to the surface through two Ti-O bonds, are energetically more favored than monodentate ones; (iv) partial hydration of TiO(2)(001)-1 x 1 tends to favor the bidentate chelating configuration with respect to the bridging one but has otherwise little effect on the adsorption energetics; and (v) physical adsorption of formic acid on fully hydrated TiO(2)(001)-1 x 1 is also fairly strong. Comparison of the present results for formic acid adsorption with those for water and methanol under similar conditions provides valuable insights to the understanding of recent experimental results concerning the coadsorption of these molecules.

PMID:
16471889
DOI:
10.1021/jp056572t
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center