Format

Send to

Choose Destination
J Clin Invest. 2006 Mar;116(3):703-14. Epub 2006 Feb 9.

Loss of IRF-4-binding protein leads to the spontaneous development of systemic autoimmunity.

Author information

1
Department of Medicine, Columbia University, New York, New York 10032, USA.

Abstract

IFN regulatory factor 4-binding (IRF-4-binding) protein (IBP) is a novel type of activator of Rho GTPases that is recruited to the immunological synapse upon TCR stimulation. Here we demonstrate that loss of IBP leads to the spontaneous development of a systemic autoimmune disorder characterized by the accumulation of effector/memory T cells and IgG+ B cells, profound hypergammaglobulinemia, and autoantibody production. Similar to human SLE, this syndrome primarily affects females. T cells from IBP-deficient mice are resistant to death in vitro as well as in vivo and exhibit selective defects in effector function. In the absence of IBP, T cells respond suboptimally to TCR engagement, as demonstrated by diminished ERK1/2 activation, decreased c-Fos induction, impaired immunological synapse formation, and defective actin polymerization. Transduction of IBP-deficient T cells with a WT IBP protein, but not with an IBP mutant lacking the Dbl-like domain required for Rho GTPase activation, rescues the cytoskeletal defects exhibited by these cells. Collectively, these findings indicate that IBP, a novel regulator of Rho GTPases, is required for optimal T cell effector function, lymphocyte homeostasis, and the prevention of systemic autoimmunity.

PMID:
16470246
PMCID:
PMC1361345
DOI:
10.1172/JCI24096
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Society for Clinical Investigation Icon for PubMed Central
Loading ...
Support Center