Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2006 Mar 31;281(13):8829-35. Epub 2006 Feb 2.

A growth-suppressive function for the c-fes protein-tyrosine kinase in colorectal cancer.

Author information

1
Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.

Abstract

The human c-fes locus encodes a non-receptor protein-tyrosine kinase implicated in myeloid, vascular endothelial, and neuronal cell differentiation. A recent analysis of the tyrosine kinome in colorectal cancer identified c-fes as one of only seven genes with consistent kinase domain mutations. Although four mutations were identified (M704V, R706Q, V743M, S759F), the consequences of these mutations on Fes kinase activity were not explored. To address this issue, Fes mutants with these substitutions were co-expressed with STAT3 in human 293T cells. Surprisingly, the M704V, R706Q, and V743M mutations substantially reduced Fes autophosphorylation and STAT3 Tyr-705 phosphorylation compared with wild-type Fes, whereas S759F had little effect. These mutations had a similar impact on Fes kinase activity in a yeast expression system, suggesting that they inhibit Fes by affecting kinase domain structure. We have also demonstrated for the first time that endogenous Fes is strongly expressed at the base of colonic crypts where it co-localizes with epithelial cells positive for the progenitor cell marker Musashi-1. In contrast to normal colonic epithelium, Fes expression was reduced or absent in colon tumor sections from most individuals. Fes protein levels were also low or absent in a panel of human colorectal cancer cell lines, including HT-29 and HCT 116 cells. Introduction of Fes into these lines with a recombinant retrovirus suppressed their growth in soft agar. Together, our findings strongly implicate the c-Fes protein-tyrosine kinase as a tumor suppressor rather than a dominant oncogene in colorectal cancer.

PMID:
16455651
DOI:
10.1074/jbc.M507331200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center